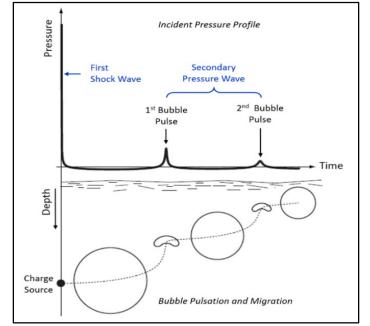


Analysis of Added Mass Effect on Surface Ships Subjected to Underwater Explosions

By

Ruturaj Trivedi Under Guidance of Professor Herve Le Sourne Mr. Simon Paroissien Mr. Clement Lucas Reviewer- Professor Lionel Gentaz



Content

- Motivation
- Added Mass
- Development of Macro and verification
- Model Preparation
- Modal Analysis
- Underwater Explosions
- Conclusions and Future Work
- Acknowledgement
- References

Motivation

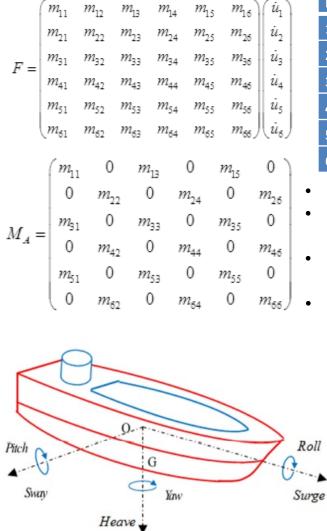
First shock wave

- o Exponential decay
- Short time
- High energy and Pressure
- o Plastic deformation-local

Bubble oscilations

- o Non-linear
- Long time duration
- Low frequency
- Global bending

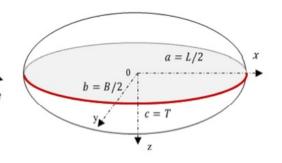
Objectives


-Study existing added mass calculation methods

-Develop tool \rightarrow ANSYS-APDL (Ansys Parametric Design language) \rightarrow Added mass effect \rightarrow Verification

-Modal and Underwater Explosion Analysis

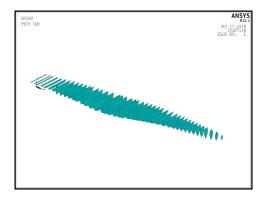
Added Mass


Weight added to system because of acceleration or deceleration of body in fluid medium

Degrees of freedom	Description	Velocities
1	Surge- motion in x direction	- Linear
2	Sway-motion in y direction	- Linear
3	Heave- motion in z direction	- Linear
4	Roll- rotation about x axis	- Angular
5	Pitch- rotation about y axis	- Angular
6	Yaw- rotation about z axis	- Angular

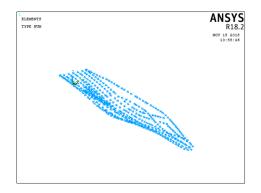
- Ellipsoid Method [1]
- Ship is assumed to be an ellipsoid
- Accuracy depends on shape of the ship
- This method cannot determine some components of the added mass matrix like :


 m_{24} , m_{26} , m_{35} , m_{44} , m_{15} , m_{51}



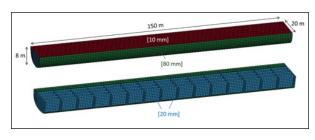
Analysis of added mass effect on surface ships subjected to underwater explosions

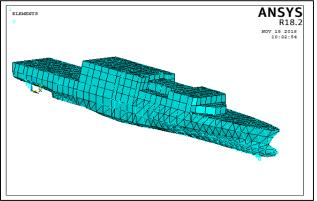
Strip Theory Method [1]


- Ship can be made up of a finite number of transversal 2D slices
- Each slice has a form resembling the segment of the representative ship
- The added mass of the whole ship is obtained by integration of the 2D value over the length of the hull $m_{11}m_{55}$

Development of ANSYS tool and Verification with Previous Literature [2]

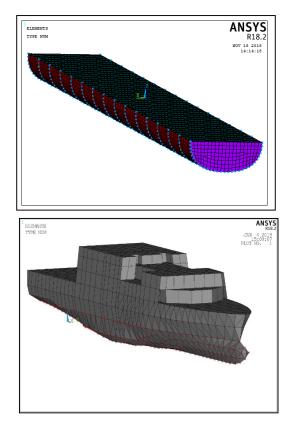
• The ship used for comparison is from the article [2]

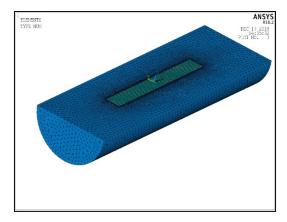


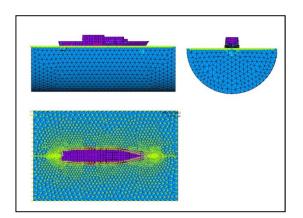

		Added Mass					Added	Mass
		Coeffici	ents	mij		Sr No	Added Mass Component	Added Mass (Tonne)
Sr No	Added Mass Coefficients	Obtained	In Research paper	Method Used	Error (%)	1	m11	261.92
1	m11	0.035	0.035	Ellipsoid	0			
2	m22	1.113	1.113	Strip theory	0	2	m22	8213.47
						3	m33	10629.62
3	m33	1.440	1.44	Strip theory	0	4	m24	6010.57
4	m24	0.814	0.814	Strip theory	0	5	m44	93.78
5	m44	0.013	0.014	Strip theory	0.09	6	m55	251.19
6	m55	0.034	0.034	Ellipsoid	0	7	m26	205.18
7	m26	0.028	0.028	Strip theory	0	8	m35	12.91
8	m35	0.002	0.002	Strip theory	0	9	m46	675.93
						10	m66	479.13
9	m46	0.092	0.092	Strip theory	0	11	m15	191.67
10	m66	0.065	0.065	Strip theory	0			
11	m15	-0.026	-0.026	Strip theory	0		Displacement of Ship	9178

• The values of m22 and m33 are very near to the displacement of the ship. The value of m24 is 65.48% of the displacement. Other components are much smaller than the displacement

Model Preparation


1. Dry Model





2. Nodal Mass Model

3. Fluid Mesh Model

Displacement=3512.478 MT

Calculated Added Masses for Models

Semi-Cylinder like-ship

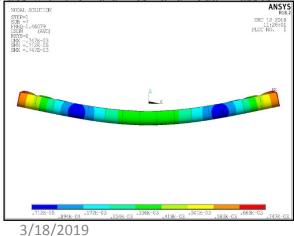
Surface Ship

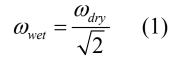
Added Mass Component	Added Mass (Tons)	Added Mass Component	Added Mass (Tons)
m11	135.00	m11	140.89
m22	15589.27	m22	2723.57
m33	24094.78	m33	5537.33
m24	7497.31	m24	257.59
m44	28.22	m44	159.08
m55	537.45	m55	74.49
m26	0.00	m26	3499.8
m35	0.00	m35	28.83
m46	0.00	m46	1891.26
m66	941.23	m66	284.76
m15	125.97	m15	181.05
Displacement	4181.69	Displacement	3512.48

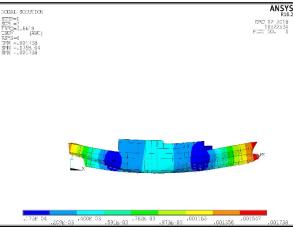
- Added mass is function of geometry of body and density of fluid

Modal Analysis

Semi-cylinder like-ship


			Frequency	Diffe	rence	
Sr	Mada shana	Dry Madal (Uz)	Nodal Mass model	Fluid Mesh model	Dry and Nodal	Dry and Fluid
No	Mode shape	Dry Model (Hz)	(Hz)	(Hz)	mass models (%)	mesh models (%)
1	1st Vertical Bending	1.46	0.74	0.84	49	42

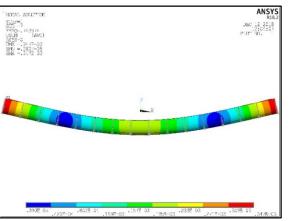

In this case, substituting the appropriate values in equation 1 the wet natural frequency is 1.03 Hz, which is 27% more than the obtained values with the fluid mesh model and nodal masses model


Surface Ship

		Frequency			Difference		
Sr No	Mode shape	Dry Model (Hz)	Nodal mass model (Hz)	Fluid Mesh model (Hz)	Dry and nodal mass models (%)	Dry and Fluid mesh models (%)	
1	1st Vertical Bending	3.66	2.46	2.7	33	26	

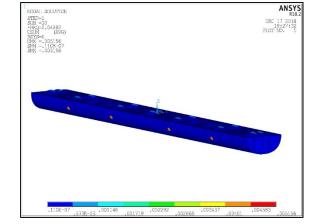
In this case, substituting the appropriate values in equation 1, the wet natural frequency is 2.59 Hz which is 4.98% more than the obtained values with the fluid mesh and nodal masses

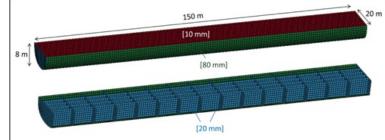
Modal Analysis


Wet model- fluid mesh

ANSYS

Semi-cylinder like-ship


		Frequency (
Sr No	Mode shape	Nodal mass model	Fluid mesh model	Error (%)
1	1st Vertical Bending	0.74	0.84	12
2	2nd Vertical Bending	1.97	2.31	14
3	1st Torsional	1.50	2.53	41


Wet model- Nodal added mass 1st Vertical Bending (2 nodes)

(7th mode, f=0.74 Hz)

(1st mode, f=0.84 Hz)

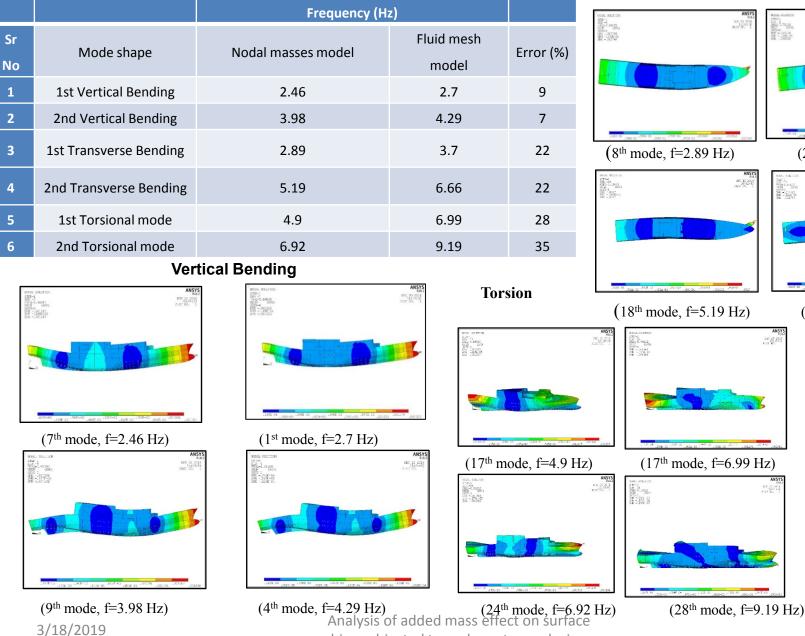
Acc. to Chantiers de l'Atlantique, real ship global mode shapes →5-6 Hz

NODAL SOLUTION

 Local Modes → absence of longitudinals and girders → not correct representation

Modal Analysis

Surface Ship


Transverse bending

10-14

ANSYS RIA 18:13:00 FOT NO.

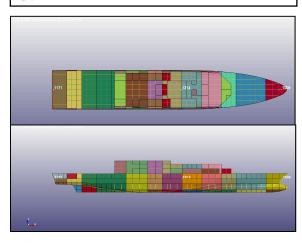
 $(2^{nd} \text{ mode}, f=3.7 \text{ Hz})$

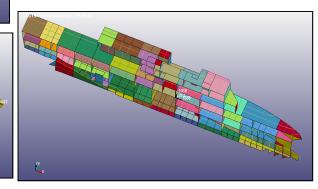
(16th mode, f=6.66 Hz)

ships subjected to underwater explosions

Modal Analysis & UNDEXValidation by Chantiers de l'AtlantiqueDrv Model **Dry Model**

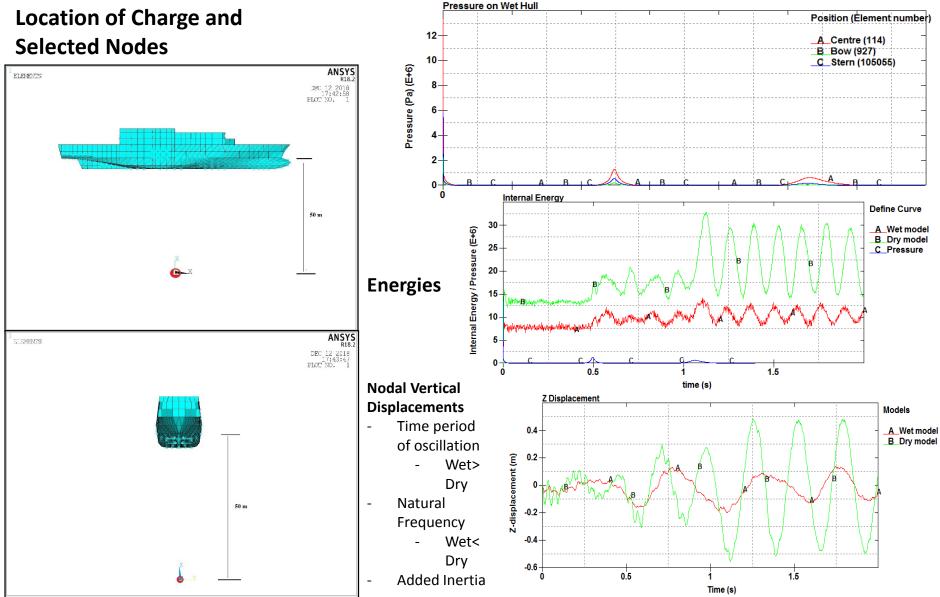
- Data from Cruise ship
- Modal frequencies undisclosed
- Error= Difference between measured and calculated natural frequencies

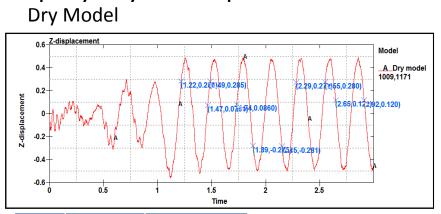

Mode type	Error Fluid element	Error Added mass
1st Vertical	3%	-2%
1st		
Transversal	3%	-14%
1st Torsion	1%	-22%
2nd Vertical	3%	-4%
3rd Vertical	4%	-6%
2nd Torsion	2%	-21%


	Description					
m _c	m _c TNT charge mass, m _c = 500 kg					
di	Distance from charge to free surface, di=					
u	50 m					
	Distance from charge to standoff point, r					
r	= 45.25 m					
S	Density of charge, = 1600 kg/m^3					
SF	Shock factor = 0.49					

Explosions Parameters Tsai [3] 3/18/2019

Analysis of added mass effect on surface ships subjected to underwater explosions

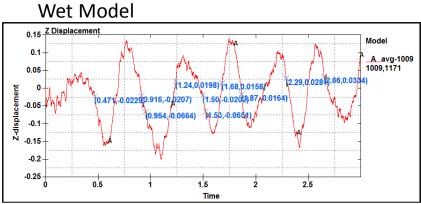

Wet Model 1



Underwater Explosions

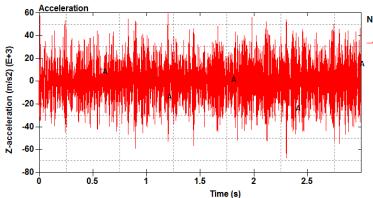
Underwater Explosions-Results Frequency Analysis from Displacement Plot Wet Model

-From ANSYS-


3.66 Hz

not excited Worst case scenario: Ship vibrating at first natural frequency

First natural frequency =


- First natural frequency

Sr No	Time	Frequency	
	period (s)	(Hz)	
1	0.27	3.70	
2	0.27	3.70	
3	0.26	3.85	
4	0.26	3.85	
5	0.27	3.70	
	Average	3.76	

Sr No	Time period (s)	Frequency (Hz)	-From ANSYS-
1	0.445	2.25	First natural
2	0.576	1.74	frequency = 2.46 Hz (nodal mass
3	0.44	2.27	method) /2.69 H
4	0.37	2.70	(fluid mesh) - First natural
5	0.37	2.70	frequency not
	Average	2.33	excited

Accelerations

Node Ids

A_Wet model (Bow)

3/18/2019

Conclusion & Future Work

Conclusion

- Accuracy Strip theory > Ellipsoid method Combination
- Developed APDL macro was validated
- Modal analysis
 - Nodal mass model verified
 - Natural Frequency- Reduced when added mass considered
 - UNDEX bubble phase \rightarrow ship hull whipping phenomena
 - If, frequency of bubble oscillation = first natural frequency of ship → one or several natural bending modes excited → worst case scenario
- UNDEX analysis
 - Vertical displacement of nodes- Reduced
 - Energy level and its fluctuation Reduced
 - Time period of oscillations Increased
 - Natural frequency- Reduced

Future Work

- Stress and strain analysis for worst case scenario
- Shock response spectrum analysis of embarked equipment
- UNDEX simulations- with fully coupled fluid acoustic mesh model
- Modification of strip theory and ellipsoid methods ightarrow

Match results : nodal mass method = fluid mesh

Acknowledgement

CHANTIERS DE L'ATLANTIQUE

- Supervisor-Professor Hervé le Sourne
- Reviewer-Professor Lionel Gentaz
- All professors and staff of ICAM

- Sylvain Branchereau
- Simon Paroissien
- Clément Lucas
- Department of Acoustics & Vibrations

- Professor Philippe Rigo
- Christine Reynders

REFERENCES

[1] Sen Do Thanh and Vinh Tran Canh, 2016, Determination of Added Mass and Inertia Moment of Marine Ships Moving in 6 Degrees of Freedom, *International Journal of Transportation Engineering and Technology*, 2(1), 8-14

[2] Sen Do Thanh and Vinh Tran Canh, 08/2016,

Method To Calculate Components Of Added Mass Of Surface Crafts, *Journal of Transportation Science and Technology*, Vol 20,69-73

[3] Tsai S.C., 2016, Numerical simulation of surface ship hull beam whipping response due to underwater explosion. Thesis (MSc). Emship 2015-17

[4] Tasdelen Enes., 2018. *Shock Analysis of On-board Equipment Submitted to Underwater Explosion*. Thesis (MSc). EMship. 2017-18.